Analyzing Public Sentiment on COVID-19 Using TF-IDF and K-Nearest Neighbors (K-NN) on Twitter Data
##plugins.themes.academic_pro.article.main##
Abstract
The coronavirus outbreak that occurred in almost all countries in the world has had an impact not only on the health sector, but also on other sectors such as tourism, finance, transportation, etc. This has given rise to various kinds of sentiments from the public with the emergence of the coronavirus as a trending topic on social media Twitter. Twitter was chosen by the public because it can disseminate information in real time and can see the market's reaction quickly. In this study, "tweet" data or public tweets related to the "Coronavirus" were used to see how the polarity of sentiment emerged. Text mining techniques and K-Nearest Neighbour (K-NN) machine learning classification algorithms were used to build a tweet classification model on sentiment whether it has a positive, negative, or neutral polarity. The test results were produced by the algorithm with an average result for a precision value of 57.93% and for an average recall niali of 55.21% with an accuracy value of 64.52%
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Taufan, R., Rivanie, T., Rahayu, S., & Gata, W. (2020). Sentimen analisis twitter terhadap isolasi diri masyarakat Indonesia akibat dampak COVID-19. MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology), 12(2), 99-103.
- Samsir, S., Ambiyar, A., Verawardina, U., Edi, F., & Watrianthos, R. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes. Jurnal Media Informatika Budidarma, 5(1), 157-163.
- Fathonah, F., & Herliana, A. (2021). Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid-19 Menggunakan Metode Naïve Bayes. Jurnal Sains dan Informatika, 7(2), 155-164.
- Rosari, M. A., Wasino, W., & Tony, T. (2022). Analisis Sentimen Tanggapan Masyarakat Terhadapbantuan Sosialpemerintah Di Masa Pandemi Covid-19 Pada Platform Twitter. Jurnal Ilmu Komputer dan Sistem Informasi, 10(1).
- Halim, A., & Safuwan, A. (2023). Analisis Sentimen Opini Warganet Twitter Terhadap Tes Screening Genose Pendeteksi Virus Covid-19 Menggunakan Metode Naïve Bayes Berbasis Particle Swarm Optimization. Jurnal Informatika Teknologi dan Sains (Jinteks), 5(1), 170-178.
- Risnantoyo, R., Nugroho, A., & Mandara, K. (2020). Sentiment analysis on corona virus pandemic using machine learning algorithm. Journal of Informatics and Telecommunication Engineering, 4(1), 86-96.
- Habibi, H. A. N. S., Nugroho, A., & Firliana, R. (2023). Perbandingan Algoritma Naïve Bayes Classifier Dan K-Nearest Neighbors Untuk Analisis Sentimen Covid-19 Di Twitter. JURNAL ILMIAH INFORMATIKA, 11(01), 54-62.
- Riza, F. (2022). ANALISA SENTIMEN VAKSINASI COVID-19 DENGAN METODE SUPPORT VECTOR MACHINE DAN NAÏVE BAYES BERBASIS TEKNIK SMOTE.
- Kaparang, S., Kaparang, D. R., & Rantung, V. P. (2021). Analisis Sentimen New Normal Pada Masa Covid-19 Menggunakan Algoritma Naive Bayes Classifier. JOINTER: Journal of Informatics Engineering, 2(01), 16-23.