Application of Artificial Neural Networks using the Matlab Application for Predicting the Rate of Development of Rainfall Intensity (Case Study in Rangkasbitung District)

Authors

  • LUTHFY BUDHY ADZY UNIVERSITAS MUHAMMADIYAH SUKABUMI

DOI:

https://doi.org/10.32764/saintekbu.v15i01.3011

Keywords:

Artificial Neural Network, Backpropagation , MatLab

Abstract

With the development of increasingly advanced information technology at this time, the MatLab application program created by applying an Artificial Neural Network can be used to predict the rate of development of rainfall intensity. Information technology can now be used to assist in processing, obtaining, compiling, storing, and managing data to produce information for researchers in compiling research so that research becomes very easy. Food crop production is influenced by rainfall during the development and growth of food crops; this causes rainfall prediction to be essential in agricultural planning. Prediction is the most crucial tool in determining everything effectively and efficiently. Therefore, several methodologies are used in compiling this research, namely collecting rainfall intensity data from each year, checking each problem, and then matching it with the required data. Samples were taken to determine the criteria for rainfall intensity based on BPS (Central Statistics Agency) data, namely data on rainfall intensity in Rangkasbitung sub-district from 2010 to 2020. The data is presented in tabular form. The following is a table of rainfall intensity data. 1) The backpropagation algorithm can be used in the prediction process; whether it is good or not is influenced by a learning material and the number of neurons in the hidden layer. 2) If the data is getting more significant on the unit in the hidden layer, the prediction results will be closer to the targeted value. 3) Using an artificial neural network in the MatLab software is proven to predict rainfall intensity development rate.

Downloads

Download data is not yet available.

References

Anwar, B. (2011). Penerapan Algoritma Jaringan Syaraf Tiruan Back Propagation dalam Memprediksi Tingkat Suku Bunga Bank. Jurnal SAINTIKOM, 10(2), 1–7.

Cripps, A. (1996). Using artificial neural nets to predict academic performance. Proceedings of the ACM Symposium on Applied Computing, Part F128723, 33–37. https://doi.org/10.1145/331119.331137

Hamid, N. A., Nawi, N. M., Ghazali, R., & Salleh, M. N. M. (2011). Accelerating learning performance of back propagation algorithm by using adaptive gain together with adaptive momentum and adaptive learning rate on classification problems. International Journal of Software Engineering and Its Applications, 5(4), 31–44.

Meinanda, M. H., Annisa, M., Muhandri, N., & Suryadi, dan K. (2009). Prediksi masa studi sarjana dengan artificial neural network. Internetworking Indonesia Journal, 1(2), 31–35.

Pakaja, F., & Naba, A. (2015). Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor. Neural Networks, 6(1), 23–28.

Prasetyawan, P., Ahmad, I., Borman, R. I., Ardiansyah, Pahlevi, Y. A., & Kurniawan, D. E. (2018). Classification of the Period Undergraduate Study Using Back-propagation Neural Network. Proceedings of the 2018 International Conference on Applied Engineering, ICAE 2018. https://doi.org/10.1109/INCAE.2018.8579389

Putra, H., & Ulfa Walmi, N. (2020). Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation. Jurnal Nasional Teknologi Dan Sistem Informasi, 6(2), 100–107. https://doi.org/10.25077/teknosi.v6i2.2020.100-107

Sudarsono, A. (2016). Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Bacpropagation (Studi Kasus Di Kota Bengkulu). Jurnal Media Infotama, 12(1), 61–69. https://doi.org/10.37676/jmi.v12i1.273

Wuryandari, M. D., & Afrianto, I. (2012). Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Pada Pengenalan Wajah. Jurnal Komputer Dan Informatika, 1(1), 45–51.

Yustanti, W. (2012). Algoritma K-Nearest Neighbour untuk Memprediksi Harga Jual Tanah. Jurnal Matematika Statistika Dan Komputasi, 9(1), 57–68.

Downloads

Published

2023-06-21

How to Cite

ADZY, L. B. (2023). Application of Artificial Neural Networks using the Matlab Application for Predicting the Rate of Development of Rainfall Intensity (Case Study in Rangkasbitung District). SAINTEKBU, 15(01), 1–8. https://doi.org/10.32764/saintekbu.v15i01.3011