Application of Moving Average for Forecasting The Amount of Electricity Distribution in The Mojokerto Region

Authors

  • M. Irfan Hanafi Universitas Islam Majapahit

Keywords:

MSE, RMSE, Forecast

Abstract

PT PLN Mojokerto is responsible for managing electricity distribution in the Mojokerto area. To effectively manage electricity distribution, accurate forecasting is crucial. Data plays a pivotal role in making decisions related to electricity distribution in Mojokerto. The primary objective of this research is to forecast the amount of electricity to be distributed in the area. Having an accurate forecast is essential for estimating future electricity distribution. The research utilizes the Moving Average model, a time series forecasting model. Data for the research is sourced from the Mojokerto statistical agency, covering the period from 2014 to 2020. By employing the Moving Average method, researchers can generate forecasts for the future. Additionally, the researchers calculate MSE (Mean Squared Error) and RMSE (Root Mean Squared Error) when using the Moving Average method.

Downloads

Download data is not yet available.

References

Abbas, I. (2016). Penerapan Metode Moving Average (MA) Berbasis Algoritma Support Vector Machine (SVM) untuk Membandingkan Pola Kurva dengan Trend Kurva pada Trading Forex Online. ILKOM Jurnal Ilmiah, 8(1), 37–43. https://doi.org/10.33096/ilkom.v8i1.20.37-43

Eris, P. N., Nohe, D. A., & Wahyuningsih, S. (2014). Peramalan Dengan Metode Smoothing dan Verifikasi Metode Peramalan Dengan Grafik Pengendali Moving Range (MR) (Studi Kasus: Produksi Air Bersih di PDAM Tirta Kencana Samarinda) Forecasting with Smoothing and Verification Methods with Moving Range (MR) Control Chart (Case Study: Production of Pure Water at PDAM Tirta Kencana Samarinda). Jurnal EKSPONENSIAL, 5(2), 203–210.

Maricar, M. A. (2019). Analisa Perbandingan Nilai Akurasi Moving Average Dan Exponential Smoothing Untuk Sistem Peramalan Pendapatan Pada Perusahaan XYZ. Jurnal Sistem Dan Informatika, 13(2), 1–10.

Prasetya, B. P. (2017). Penerapan Metode Single Moving Average (SMA) pada Aplikasi Peramalan Penjualan Di Kedai Digital #24 Kediri. Simki.Unpkediri.Ac.Id, 1–6.

Rachman, R. (2018). Penerapan Metode Moving Average Dan Exponential Smoothing Pada Peramalan Produksi Industri Garment. Jurnal Informatika, 5(2), 211–220. https://doi.org/10.31311/ji.v5i2.3309

Suhardi, D., Awaluddin, R., Penjualan Keramik Menggunakan Metode, P., & Kuningan, U. (2020). Peramalan Penjualan Keramik Menggunakan Metode Moving Average Dan Exponential Smoothing Pada Usaha Agus Keramik Kusyanto. Jurnal Ekonomi Akuntasi Dan Manajemen, 1(1), 12–21. https://journal.uniku.ac.id/index.php/jeam

Suprayogi, I., Trimaijon, & Mahyudin. (2014). Model Prediksi Liku Kalibrasi Menggunakan Pendekatan Jaringan Saraf Tiruan (ZST) (Studi Kasus : Sub DAS Siak Hulu). Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, 1(1), 1–18.

Downloads

Published

2022-08-28

How to Cite

Hanafi, M. I. (2022). Application of Moving Average for Forecasting The Amount of Electricity Distribution in The Mojokerto Region . SAINTEKBU, 14(02), 66–71. Retrieved from https://ejournal.unwaha.ac.id/index.php/saintek/article/view/2771